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This paper analyzes the detection of signals using Walsh power spectral estimates. In
addition, a generalization of this method of estimation is analyzed. The conclusion is that
Walsh transforms are not suitable tools for the detection of weak signals in noise.

l. Introduction

The economy of Walsh transform calculations has led to
speculation on the feasibility of using Walsh power spectral
estimates instead of Fourier spectral estimates in various
estimation and detection problems such as in a signal presence
indicator, precision signal power measurement and radio
frequency spectrum monitoring for the DSN. At least one
paper (Ref. 1) has appeared showing that there is a linear
relation between the Walsh power spectrum and Fourier power
spectrum when the signal is stationary.

However, in a practical problem, only a finite sample of a
signal is available and only estimates of the spectra can be
obtained. Simple examples can be constructed which show
that there is not a one to one correspondence between Walsh
and Fourier power spectral estimates obtained from finite
signals. Hence, the Walsh power spectrum cannot be used to
precisely reconstruct the Fourier power spectrum.

*Consultant from the University of Southern California.

The idea of using the Walsh spectrum can be salvaged by
posing a power estimation problem in the context of stochas-
tic noise theory. When random noise is present in a received
signal, Walsh power estimates are random variables which have
some statistical structure. By examining this structure, “opti-
mal” estimates of the power of a signal in noise can be
obtained using the Walsh power estimates. If the signal is exp
(jwt), this this constitutes estimating a Fourier power compo-
nent.

Another problem is the detection of weak signals in noise
when there is some phase instability in the local oscillator. If
the signal is sufficiently weak, its detection requires the gather-
ing of data for a time period much greater than the period of
stability of the oscillator. In this case a quadratic estimate can
be constructed and accumulated over long time periods to
provide a reliable estimate of signal power.

It will be seen that Walsh power estimates are not useful for
these problems.
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Il. An Estimation Problem

The following assumptions are made:

(1) The received signal is a complex signal, X (1), consisting
of a signal. a + S (¢), plus broadband noise, N (1).

(2) The signal is sampled at time intervals, &k * 7. to obtain

samples
Y(k) - X(f().k) - a'S(k'[())_‘—N(k'fo) )
x(k) = as(k) + n(k) ‘ (1)

(3) The sequence. [n (k)] is stationary, complex, Gaussian
with mean zero,

0

E [nkn(m)]

E {n(km(k +m)]

0,form#0 )

[, form=0

(4) The signal amplitude, o, is less than 1 and the signal
function, s (k). has more or less constant energy of 1
over segments of length V: that is,

N

Z Is(k +nz)|2 ~1

k=1

The last normalization is the appropriate one for the Fou-
rier power estimation problem. Also, with this normalization it
is easy to characterize the detection problem in terms of a.
For a near |.a matched filter detector on NV points is marginal
for detection of the signal: tor a much less than 1. the
accumulation of data over many segments of length N is
necessary. It is assumed that phase stability is such that longer
matched filters are not possible, and this leads to the need for
quadratic estimates. The relation between signal-to-noise ratio
(SNR) and a is SNR = a2 /V.

The relevant class of estimation processes is the following:
A received signal sequence ot length & « M is segmented into M
segiments of length &, On each segment a unitary transforma-
tion (such as Fourier or Walsh) is applied and the absolute
value squared of each component is averaged over the M
segments. These NV numbers are to be used to estimate a?. The
signal detection decision is obtained by comparing this esti-
mate to a threshold.
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ill. Derivation of an Estimator

Let the unitary transformation have matrix U= (uy,,,) and
define

N N
x,(m) = Z u, x(k) = Z u,, las(k) + n(k)]
k=1 k=1
=ac S(j(m) + n(](m)
and

IxU(m)l2 = InU(m)I2 +at 1sU(rn)l2

+a [, (m)s (m) + g (ms )] (3)

Unitary transformations preserve all of the statistical proper-
ties of the Gaussian noise sequence. It can therefore be shown
that the random variables

z(m)= IxU(m)|2 - o? IsU(m)l2 -1 (4)

are mean zero, and pairwise orthogonal. Their variances are

A Gm)=1+ 2a? IsU(m)I2
Next, make the calculations of Eq. (4) for the kth interval
for k from 1 to M and average over the set of intervals

M

Jw
Yon) = 30 3 2®em) = 1 3 [ en2
k=1 k=1

1 - @l |S’Z/,(mj|2]
= <4xU(m)|2>* !
o> (sl (5

The Y (k) are mean zero, orthogonal and have variance

o (Y (m)) :/tl? l:l +2a° <|sU(m)]2>jl

The case where powerful methods of signal detection are
needed is the case in which « is very small and indeed so small
that all of the o? |s;, ()2 are much smaller than 1. In this
case

]

o (Y ()~ 7



For large M, the Y (k) are approximately normally distri-

buted, and the maximum likelihood estimate of &? is that

value of & in Eq. (5) which minimizes

IR [ v2(m)

+1n [o° (Y(m))] J (6)
o> (Y(m))

1
2

m=

With the above approximation of the variance, this is equiv-
alent to minimizing

IR[CREDEEE ) )

E'=

Let §,,(m) = qu(m)!2> and W(m) = <|xU(m)|2> . Then
the value of o which minimizes £ is

N
2 S Omwen) - 1]
= (8)
N
IR
m=1

The numbers W (m) are the accumulated spectral power esti-
mates, and S (m7) are signal structure numbers relative to the
particular transform.

IV. Properties of the Estimator

Again, assuming M is large so that the W (€) can be assumed

to be normally distributed, we have expectation and variance
L~
of a”:

E(&%) = a&?
N
2oL
Z LSL,(m) m
2 A2 =1
o (o) = —— —

R v— 9

m-=1

It there is no signal present (& = 0), the estimator has expected
value O but has the same variance as Eq. (9).

It can therefore be seen that the ratio o to the standard
deviation,

N

M Z S%(m) (10)
m=1

is a measure of the effectiveness of the estimator. If R is much
less than 1, the estimator is ineffective in signal detection, and
if R is much larger than [, the estimator is a reliable indicator
of the presence or absence of the signal. In terms of signal-to-
noise ratio, SNR, this can be restated as: If

-1

SNR << [N- /M-”zsg(m)}

the estimator is ineffective, while if
-1

SNR>>[N W}

the estimator is effective.

(10a)

Since

N
E Si,(m)

m=1

plays a key role in the effectiveness of the detection process, it
will be called the efficiency factor and designated £ (U, s). For
a given signal-to-noise ratio, SNR, and given efficiency, £ (U
s), the number of segments, M, of data that must be accu-
mulated for reliable detection of the signal, s, satisties

M>1/(SNR - N)? - E (U, 5) (10b)

V. Efficiency of Unitary Transformations

When the unitary transformation, U, is the discrete Fourier
transform, the numbers SU(m) are the averaged power
spectrum of the desired signal. In the case where U is the
Walsh transform, the SU(m) will be called the Walsh spectral
power, and more generally S, (m) will be called the spectral
power relative to U. Recalling that the signal., s, was normal-
ized to unit energy over N samples, we have

N
D S my~1

m=1

From this it can be seen that the maximum of £ (U, s) is 1.
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This occurs when S, (m) = 1 for some m,, and S, (m) =0 for
m # m, . In this case, Eq. (10b) gives

M>1/(SNR - N )?
for reliable detection.

The opposite extreme occurs when S (m) = 1/N for all m.
Then £ (U, s) = 1/N and

M>N/(SNR - N ) = 1/N (SNR)®

for reliable detection.

An intermediate case is when S;{m) = 1/L for L choices of
m and is O for all other m. In this case £ (U, s) = 1/L and

2=£ 1

M>L/(SNR - N ——
N N (SNR)?

This example shows that there is a relation between efficiency
and bandwidth, since if the L choices of m are contiguous and
U is the discrete Fourier transtorm, then the signal has band-
width L/NV ly-

VI. Walsh Transforms Applied to
Sinewaves

Let N = 2" and let (kn—l""’
tation for k, 0 < k <V, that is,

k) be the binary represen-

Then the Walsh transform matrix is

W, o= \/_( 1)=* (11a)

If the signal to be detected is a complex sinewave of frequency
flt,, then

o QTk) (12

s(k)= exp, (k)= 2)

.
S
When the Walsh transtorm of the signal is taken, the result is

N-

1(2ﬂfk+¢) rkL.
N Z ( 1) i~
k=0

s®) =
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k=0

]&p n-1 ﬂ](2f2 +Q)
sy ()

i=

en/ixk,.(zfzfnzi)

(13a)

The power spectrum is

) .7
s, @2 = T cos? (w (2’,~+7—’)) (14a)

i=0

5,0 =

and the sum of squares of the power spectrum terms is

Q
cos* (n (2{f+~2—’-)) (15a)
n-1

[T teos*m2ipy +sin @20

=0

N-1 N-1 n-1

2 syo= 2 J1

=0 =0 =0

n-1

E(W,expf) [% + 211; cos (47r2"f)}

i=0

For any particular choice of £, the efficiency E (W, expf)
can be computed from Eq. (15a). In particular, if f=1/3, the
expression can be evaluated and is

~log, (8/5) 273

. 5 mn.
EW.exp, )= (3) =N ~v 7P (16)

For N = 1024, the efficiency is only about 0.01, and becomes
worse for larger V. Thus, the Walsh transform is very poor for
detecting a sinewave with frequency (1/3)t,,.

For a sampled data system, the frequency. f lies in the
range [~'%, ¥]. If Eq. (15a) is integrated over this range, the
average efficiency is obtained:

2 3Y)" -1 4/3 0.4
Ave, {E (W, exp.)} = (T> Y

Since the efficiency is never negative, this implies that the
efficiency is less than 2 X N~1022(4/3)for at least half of the
values of f in [-%, ¥]. Therefore, for reliable detection, M
grows like %AN9-4 for at least half of the values of f. For n =
1024, the efficiency is less than 0.06 for more than half the
frequencies. Thus, Walsh transforms are poor for detecting
most sinewaves.



The same calculations for the Fourier transform are

1 —2mkN

Fk,Q =~\7ﬁe (11b)
1 jo N 2mik(— (UN
SF(Q) = Nem Z e - (X/V)) (13b)
k=0

N-1

>

N3 -
Q,klk2k3k4 0

exp 277]‘<f~ %) <k] +k2 - k3 - k4>

. 1 {2N? +1 1 {N? -1
E(F, expy) =3 ( e )+§( N )COS(ZﬂfN)

(15b")
The smallest value of this efficiency is

1 2 1
min £ (F,exp,) == (1+——> ~ =
f f 3 N2 3

VIl. Conclusions

We have seen from the previous analysis that Walsh trans-
forms are very inefficient in the detection of sinewaves. This
analysis can be extended to show that they are inefficient
whenever the signal to be detected is narrowband (when the

15
(1) energy is confined to a bandwidth which is a small multiple of
1/N). Therefore, Walsh transforms are not useful in systems
With a little algebraic manipulation, this last expression is which must detect such signals.
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